Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season.

نویسندگان

  • John M Wallace
  • Qiang Fu
  • Brian V Smoliak
  • Pu Lin
  • Celeste M Johanson
چکیده

A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO(2) concentrations alone are compared with observations for the reference interval 1965-2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°-90 °N) versus southern (S: 60 °S-40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 721, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borehole temperatures and tree rings: Seasonality and estimates of extratropical Northern Hemispheric warming

[1] We construct an extratropical reduced temperature–depth profile for land areas north of 20 N latitude from the global borehole temperature database compiled for climate reconstruction. The mean reduced temperature profile compares well with a time series constructed from an initial baseline temperature (0.6 ± 0.1 C) and the last 140 years of gridded annual surface air temperature data diffu...

متن کامل

Multiple satellite observations of cloud cover in extratropical cyclones

[1] Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both ...

متن کامل

Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain

Results are presented from a set of experiments designed to investigate factors that may influence proxy-based reconstructions of large-scale temperature patterns in past centuries. The factors investigated include 1) the method used to assimilate proxy data into a climate reconstruction, 2) the proxy data network used, 3) the target season, and 4) the spatial domain of the reconstruction. Esti...

متن کامل

The influence of extratropical Atlantic Ocean region on wet and dry years in North-Northeastern Brazil

The rainy season of north-Northeastern Brazil (NE), one of the tropical regions with the largest rainfall interannual variability, is associated with the Intertropical Convergence Zone (ITCZ) influence, which is located in the southermost position during this season (March-April-May). However, there is a large interannual variability in the ITCZ position, associated with atmospheric and oceanic...

متن کامل

Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern versus Southern Hemisphere Warm Fronts

Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. A ubiquitous problem among general circulation models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. This study analyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 36  شماره 

صفحات  -

تاریخ انتشار 2012